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Abstract
For odd anharmonic oscillators, it is well known that complex scaling can
be used to determine resonance energy eigenvalues and the corresponding
eigenvectors in complex rotated space. We briefly review and discuss
various methods for the numerical determination of such eigenvalues, and
also discuss the connection to the case of purely imaginary coupling, which
is PT -symmetric. Moreover, we show that a suitable generalization of the
complex scaling method leads to an algorithm for the time propagation of wave
packets in potentials which give rise to unstable resonances. This leads to a
certain unification of the structure and the dynamics. Our time propagation
results agree with known quantum dynamics solvers and allow for a natural
incorporation of structural perturbations (e.g., due to dissipative processes) into
the quantum dynamics.

PACS numbers: 11.15.Bt, 11.10.Jj, 68.65.Hb, 03.67.Lx, 85.25.Cp

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum tunneling is one of the intriguing phenomena in quantum mechanics. Since the
seminal work of G Gamow on the theory of the alpha decay of a nucleus [1], quantum
tunneling of a particle trapped in a metastable potential well has been studied in detail in
many areas of physics. Indeed, in mathematical terms, the decay width of the corresponding
resonance state in a, e.g., cubic potential can be traced back to an instanton configuration which
is a solution of the classical equations of motion of a particle moving in the ‘inverted’ potential
−V (q) in such a way that the classical action of the particle along its trajectory remains
finite even though the time domain covered by its trajectory is the entire space R. Here, the
instanton configuration covers the domain naturally associated with the tunneling process
from a relative minimum of the potential to a point where a horizontal line would emerge
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from the ‘tunnel’ potential. An approximation to the width can be obtained by considering
the fluctuations around the classical path, and by a subsequent evaluation of the Fredholm
determinant describing the fluctuations. This is quite analogous to the case of double-well-like
potentials [2, 3], where the instanton configuration describes an oscillatory motion covering a
trajectory oscillating between the two degenerate maxima of the inverted potential.

At the same time, the structure of the potentials depends very much on the complex
phase of the coupling constant. Let us assume a metastable potential approximated by a
one-dimensional harmonic oscillator perturbed by a cubic term

√
gq3, where g is the coupling

constant. For purely imaginary
√

g = iβ, with β ∈ R, the Hamiltonian is invariant under
the composed application of a parity transformation and a time reversal and thus called PT -
symmetric. In some sense, the PT -symmetric case is a natural generalization of hermiticity
(or even self-adjointness) to the complex domain, and it will be verified here that a number
of concepts known to be applicable to ‘stable’ anharmonic oscillators are applicable to the
PT -symmetric cubic potential as well.

Coming back to the case of real coupling parameter
√

g, we note that known methods
for the numerical determination of resonance energies and widths include the diagonalization
of a complex-rotated Hamiltonian matrix, Borel resummation [4, 5]4 in complex directions of
the parameters, and strong-coupling expansions. These three methods will be discussed and
contrasted here as they are important for the construction of an adiabatic, complex transformed
time propagation algorithm that is also described in this paper. Namely, we attempt to solve the
problem of how to propagate a wave packet that moves under the influence of a potential with
metastable resonances and which may thus even ‘escape’ to the classical region of attraction
where the potential assumes large negative values, without the need for a temporally adjusted
numerical grid and without the need for the introduction of transparent boundary conditions.
Moreover, we attempt to construct this algorithm using complex resonance eigenstates, thus
giving a manifest interpretation to the complex resonance state and energies within the time
propagation method, including the back-transformation of the complex rotated and propagated
states to the normal coordinate representation.

This paper is organized as follows. In section 2, we recall some basic definitions related
to the cubic potential, to perturbative and strong-coupling expansions and to the method of
complex scaling. Also, corresponding numerical investigations are discussed. In section 3,
we discuss a method for time propagation in the cubic potential, which leads to the above-
mentioned desired unification. Finally, a summary is presented in section 4. An appendix is
devoted to the discussion of potential applications of the algorithms discussed here within a
solid-state physics context. In the entire paper, we attempt to follow a rather detailed style in
the presentation and hope that the reader will not find the level of detail excessive.

2. Complex resonance energies versus the real PT -symmetric spectrum for the cubic
oscillator

2.1. Orientation

Although our analysis can easily be generalized to quintic and other ‘odd’ potentials with
metastable resonances, we start for simplicity with the one-dimensional Hamiltonian of the
cubic potential in the normalization

Hc = −1

2

∂2

∂q2
+

1

2
q2 +

√
gq3, (1)

4 The Borel summation of Rayleigh–Schrödinger perturbation theory is necessitated by the asymptotic divergence
of the perturbation series, whose study (for the case of stable, φ4, perturbations), has been initiated in [4, 5].
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which recovers the harmonic oscillator spectrum EN = N + 1
2 in the limit of a vanishing

coupling constant g → 0, where N is a nonnegative integer and constitutes the quantum
number of the state. For nonvanishing g, the operator (1) is not self-adjoint, and it does not
possess a spectrum of discrete, real energy eigenvalues. For real and positive g, the cubic
Hamiltonian (1) possesses resonances, i.e. poles of the resolvent (Hc −E)−1 which is a priori
defined as a holomorphic function for Im E > 0. The poles (resonances) become apparent in
the meromorphic analytic continuation of the resolvent to Im E < 0. The resonance energy
eigenvalues are of the form

EN(g) = Re[EN(g)] − i
�N(g)

2
. (2)

By contrast, for purely imaginary coupling
√

g = iβ, the Hamiltonian (1) is PT -symmetric,
i.e. it is invariant under a simultaneous parity transformation q → −q and a time reversal
operation t → −t, the latter being equivalent to an explicit complex conjugation of the
Hamiltonian and thus to the replacement β → −β.

Based on numerical evidence, it has been conjectured around 1985 by D Bessis and one
of us (JZ-J) in private communications that the spectrum of the PT -symmetric Hamiltonians
of odd anharmonic oscillators should consist of real eigenvalues, even if these Hamiltonians
are obviously not self-adjoint. C M Bender and others have recently studied PT -symmetric
Hamiltonians quite intensively (see, e.g., [6–10]). Note, in particular, that even the quartic
anharmonic oscillator with negative coupling becomes a PT -symmetric Hamiltonian with
a real spectrum when endowed with appropriate boundary conditions imposed on the
wavefunction as a function of a complex coordinate, as detailed in equation (4) of [11]. The
conjecture has recently been supported on mathematical grounds (see [12–15]). Important
further contributions to the development of the theory of PT -symmetric quantum mechanics
have been summarized in [8–10].

2.2. Imaginary coupling parameter and real energies

The discussion in this section is a priori relevant only for the case
√

g = iβ, with β ∈ R,

but we will keep a general g in the first considerations, because the general formulae (as a
function of g) will be useful later in this paper. First, we recall that, as explained in [2, 3], the
spectrum of anharmonic oscillators can be described in many cases by two functions B and A.

Respectively, these are related to the perturbative expansion about the minima of the potential
and to the tunneling of the quantal particle from one degenerate or quasi-degenerate minimum
(if it exists) to the other degenerate or quasi-degenerate minimum of the potential. Specifically,
around equation (3.31) of section 3 of [2], it is explained how, in the case of integrable systems,
a ‘perturbative B function’ can be obtained from the perturbative expansion of the logarithmic
derivative of the wavefunction, which fulfils a differential equation of the Riccati type and
which is subject to a uniqueness condition which gives rise to the integer N on the right-hand
side of equation (4). Using techniques outlined in [16], the function B(E, g) can be easily
determined for the cubic potential, and the first terms read as follows,

B(E, g) = E + g
(

7
16 + 15

4 E2
)

+ g2
(

1365
64 E + 1155

16 E3
)

+ O(g3). (3)

By formulating the initial perturbation as
√

gq3, we have obtained a perturbative expansion
for B which involves integer powers in the coupling constant. As usual, the perturbative
expansion for the Nth energy level can be obtained by inverting the condition

B(E, g) = N + 1
2 , (4)

and we obtain the standard Rayleigh–Schödinger perturbation theory (RSPT) series for the
Nth level of the cubic potential,

3
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EN(g) =
∞∑

k=0

E
(0)
N,Kgk, (5)

where K is the order of perturbation theory, and the leading perturbative coefficients read as
follows, for a general level with quantum number N,

E
(0)
N,0 = N + 1

2 , (6a)

E
(0)
N,1 = −[

7
16 + 15

4

(
N + 1

2

)2]
, (6b)

E
(0)
N,2 = −[

1155
64

(
N + 1

2

)
+ 705

16

(
N + 1

2

)3]
, (6c)

E
(0)
N,3 = −[

101 479
2048 + 209055

256

(
N + 1

2

)2
+ 115755

128

(
N + 1

2

)4]
. (6d)

The minus signs are explicitly indicated to illustrate that all perturbative coefficients are
negative for all levels, except for the leading term N + 1

2 , which stems from the unperturbed
harmonic oscillator.

If perturbation theory determines the energy eigenvalues completely in thePT -symmetric
case and there are no instanton configurations to consider, then the quantization condition (4)
can be reformulated as

1

�
(

1
2 − B(E, g)

) = 0,
√

g = iβ. (7)

This quantization condition is formulated such as to display the analogy to those for more
complex potentials like the double well (see equation (25) of [17]), but it lacks the ‘instanton A

function’ present in the cited equation. A Bohr–Sommerfeld quantization condition of the form
(7) is relevant for stable anharmonic oscillators such as, e.g., the quartic one with a perturbation
proportional to gq4 for positive coupling g, where there are no instanton configurations to
consider and therefore no ‘instanton A function’ present. We now investigate to which extent
this quantization condition could be relevant for the cubic anharmonic oscillator.

To this end, we first recall that the cubic Hamiltonian (1) displays PT -symmetry for
imaginary coupling

√
g = iβ. The spectrum of the cubic oscillator becomes real in this

case, as a consequence of pseudo-Hermiticity [18], and the perturbation series (5) becomes an
alternating, factorially divergent series in the variable g = −β2; series of this type are typically
Borel summable. We are therefore led to the conjecture that the quantization condition (7)
should describe the energy levels of the cubic Hamiltonian (1), but only for the PT -symmetric
case

√
g = iβ.

As discussed in section 2 and as shown in our previous paper ([19]), the direct analysis
of the perturbative B function which enters the quantization condition (7), without any detour
via the perturbation series (5), can be used to investigate our conjecture formulated above,
in order to calculate the energy eigenvalues of the cubic Hamiltonian (1) directly. Here, we
explore this approach in the case of imaginary coupling

√
g = iβ. To this end, we interpret

B(E, g) as a function of E (at fixed g) and numerically determine the points at which this
function assumes values of the form N + 1

2 . According to equation (7), these points correspond
to the real energy eigenvalues EN(g) of the cubic Hamiltonian in the PT -symmetric case. In
many cases, direct investigation of the perturbative B function has proved to be numerically
more stable than that of the Borel-resummed series (5) (see alse [19]).

In figure 1, for example, we display B(E, g) as a function of the (real) energy argument
E for different fixed values of the coupling parameters g. Specifically, we consider the cases√

g = iβ = i/10 (circles),
√

g = iβ = i/5 (squares) and
√

g = iβ = i (triangles). The
points where B(E, g) = N + 1

2 are clearly displayed. The (real) ground-state energy EN(g)

4
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Figure 1. Energy dependence of the function B(E, g) for the PT -symmetric case. Results are
presented for the coupling parameters

√
g = iβ with β = 1/10 (red circles), β = 1/5 (green

squares) and β = 1 (blue triangles).

Table 1. Ground-state energy of the cubic Hamiltonian for the PT -symmetric case
√

g = iβ.

Results have been obtained by the diagonalization of the complex-transformed Hamiltonian in the
basis of the harmonic oscillator wavefunctions (‘exact’ values) and by solving the quantization
condition given in equation (7). The apparently ‘converged’ decimals for the solutions of
B(E, g) = 1

2 are underlined.

β E0(g) Solution of B(E, g) = 1
2

1/10 0.512 538 145 0.512 538 145
1/8 0.518 760 345 0.518 760 344(1)

1/6 0.530 781 759 0.530 781 77(1)

1/4 0.558 372 124 0.558 377(4)

1/2 0.645 877 080 0.645 7(3)

for the PT -symmetric case is presented in table 1 and compared to reference data obtained
via a diagonalization of the Hamiltonian matrix. The ground-state energy is well reproduced
at β = 1/10 (up to 9 decimal digits). For stronger coupling, there is a larger uncertainty
in the determination of the ground-state energy value EN=0(g) because the power series (3)
is divergent for all nonvanishing g, and, hence, resummation techniques are required for
its calculation. In all cases, the function B(E, g) is calculated by means of a generalized
Borel–Páde method, similar to [19]. We observe, in higher (Borel) transformation orders,
an oscillatory behavior of the Borel integral, evaluated along complex directions, for larger
g. These oscillations cannot be overcome when the transformation order is increased and
represent a fundamental limit of the convergence of resummed weak-coupling perturbation
theory in the case of a large (modulus of the) coupling parameter g. All numerical experiments
support the conjecture (7) for the PT -symmetric case.

2.3. Real coupling parameter and complex resonance energies

We again consider the Hamiltonian (1), but this time for real and positive g. First, let us note
that the structure of the perturbation series (5) is of course unaffected by a change in the

5
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Figure 2. Instanton configuration for the cubic potential. The dashed line is the potential U(χ) =
χ3 − 1

2 χ2. The solid line is the worldline of the instanton configuration χcl(t) = [cosh(t) + 1]−1,

which reads in inverted form t (χcl) = ±arccosh[(1 − χcl)/χcl].

complex phase of the coupling parameter. However, we now have instanton configurations to
consider. Let us consider for a moment the classical Euclidean action, corresponding to (1),

S[q(t)] =
∫

dt

[
1

2

(
∂

∂t
q(t)

)2

+
1

2
q(t)2 +

√
gq(t)3

]
. (8)

This action describes the motion of a particle in the potential −√
gq(t)3 − 1

2q(t)2. Via the
change of variable q(t) = −χ(t)/

√
g, we obtain the action,

S[χ(t)] = 1

g

∫
dt

[
1

2

(
∂

∂t
χ(t)

)2

+
1

2
χ(t)2 − χ(t)3

]
, (9)

for which the (redefined) potential now reads U(χ) = χ3 − 1
2χ2. The (classical) instanton

configuration is (see figure 2)

χcl(t) = 1

cosh(t) + 1
, S[χcl(t)] = 2

15
, (10)

which fulfils U(χcl(t = 0)) = U
(

1
2

) = 0. An integration about the fluctuations around the
instanton path in the partition function using methods described in [20] then leads to the known
result

Im E0(g) ≈ − 1√
πg

exp

(
− 2

15g

)
(11)

for the imaginary part of the ground-state energy. Observe that in contrast to the quartic
potential, where two degenerate instanton configurations are present because of the reflection
symmetry of the quartic potential [20], the cubic potential has no reflection symmetry and

6
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only one instanton. We conclude that the ‘instanton A function’ for the cubic oscillator should
have the leading terms

A(E, g) = 2

15g
+ O(g). (12)

However, we stress that the analogue of the quantization condition (7), suitably generalized for
odd anharmonic potentials, has not yet appeared in the literature to the best of our knowledge.
This problem is currently under investigation. It is clear that a suitable quantization condition
should involve the A function in such a way that the decay rate follows naturally by an
expansion in both analytic and nonanalytic terms for g small, so that a so-called resurgent
expansion [21–23] is obtained which allows for the nonanalytic behavior of the imaginary part
of the resonance energy as g → 0+.

If the (generalized) quantization condition for g > 0 were known, then we could use it in
order to calculate complex resonance energies, via a direct resummation of both the perturbative
B and the instanton A function, in a similar way as was done for the PT -symmetric case in the
previous section. We recall that for the PT -symmetric cubic potential, where we resummed
only the B function, and for the Fokker–Planck potential (see [19]), where we resummed both
the B and the A function, the direct resummation of the quantization condition did not give
a satisfactory numerical accuracy for the energy levels for moderate and large values of the
coupling constant. Here, our goal is to describe a numerical method which is applicable to
all domains of the coupling constant, and we thus continue here with a comparison of three
methods for the calculation of resonance energies, including an evaluation of the domains of
their respective applicability.

Method I. We apply complex scaling (see [24, 25]), q → q eiθ to the cubic oscillator, which
results in the Hamiltonian

Hc(θ) = e−2iθ

(
−1

2

∂2

∂q2
+

1

2
q2e4iθ +

√
gq3e5iθ

)
. (13)

The diagonalization of this complex-scaled operator is carried out in the basis of harmonic
oscillator wavefunctions {φn(q)}Nmax

n=0 , for large enough Nmax, and the variation of the resonance
energies under a suitable increase of Nmax is used to investigate the numerical uncertainty of
the results. This allows us to numerically determine the (complex) resonance energies of
the original cubic Hamiltonian (1). As discussed in [25, 26], these resonance energies are
independent of θ , provided we choose θ sufficiently large so that the rotated branch passes the
position of the resonance under investigation.

Method II. We resum Rayleigh–Schrödinger perturbation theory (RSPT) in complex directions
of the parameters. To this end, we use the standard RSPT series for the cubic potential as given
in equation (5). Note that the RSPT series is nonalternating in integer powers of g for real
g. We then employ the Borel–Padé summation method with the (Laplace) integration in the
complex plane, as given by equations (196)–(198) of [27]. The method has also been discussed
in detail elsewhere [27–29], and it has been put on rigorous mathematical grounds recently
[30] in the framework of distributional Borel summability. We employ an integration contour
(called C+1 in the conventions of [27]) which leads to a negative sign of the imaginary part
of the resonance energy eigenvalue, consistent with equation (25). The accuracy obtainable
using this weak-coupling method is restricted by oscillations of the transforms in higher
orders, which are analogous to those reported in [19] for other applications of the Borel–Padé
transforms. Indeed, at a relatively moderate coupling g = 0.6, the ground-state energy as
determined by resummation cannot be calculated to better accuracy than

E0(g = 0.6) = 0.554(1) − 0.351(6)i (14)

7
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Table 2. The coefficients LN,K of the strong-coupling expansion (17) of the eigenvalues
EN(g) of the cubic potential. For K = 1, the coefficients are zero. For K = 3, based on
numerical evidence, we conjecture that the coefficient is independent of N, purely real and equal
to 1/108 = 0.009 259 259 . . . .

K N = 0 N = 1 N = 2

0 0.617 160 050 − 0.448 393 023 i 2.193 309 731 − 1.593 532 797 i 4.036 380 020 − 2.932 601 744 i
2 −0.013 228 193 + 0.040 712 191 i −0.022 015 998 + 0.067 758 274 i −0.027 024 360 + 0.083 172 425 i
3 0.009 259 259 + 0.000 000 000 i 0.009 259 259 + 0.000 000 000 i 0.009 259 259 + 0.000 000 000 i
4 −0.000 294 361 − 0.000 905 951 i −0.000 141 177 − 0.000 434 499 i −0.000 118 189 − 0.000 363 747 i

by resummation. Note that the oscillations cannot be overcome when the (Borel)
transformation order is increased and represent a fundamental limit of the convergence of
resummed weak-coupling perturbation theory in the case of a large (modulus of the) coupling
parameter g. A more accurate result obtained by method I for the same coupling parameter is

E0(g = 0.6) = 0.554 053 519 − 0.351 401 778i. (15)

Method III. We employ a strong-coupling expansion in complex coordinates, to complement
the weak-coupling perturbative method. Specifically, we employ the so-called Symanzik
scaling q → qg−1/10 and rewrite the cubic Hamiltonian into a scaled one Hc → Hs with the
same eigenvalues but a fundamentally different structure,

Hs = g1/5

(
H� +

q2

2
g−2/5

)
, H� = −1

2

∂2

∂q2
+ q3. (16)

A strong-coupling perturbation expansion can thus be written for each energy EN(g), which
reads

EN(g) = g1/5
∞∑

K=0

LN,Kg−2K/5, (17)

where LN,0 is just equal to the Nth level of H�. Based on the strong-coupling expansion, it is
easy to see that a rotation angle θ = π/5 = 36◦ is sufficient to uncover all resonance energies
of the cubic oscillator, and this angle is therefore chosen for all numerical calculations reported
henceforth in the current investigation. The coefficients of the strong-coupling expansion are
given in table 2, and a comparison with the values obtained by method I is made in figure 3.

We conclude that the numerical approach (method I) can be verified to high accuracy
against both weak- and strong-coupling expansions and is found to be the most convenient
method to cover all ranges of the coupling constant g. Furthermore, the mutual agreement of
this numerical method with both the strong- and the weak-coupling expansions confirms that
an estimation of the numerical uncertainty of the results based on the apparent convergence of
the energy levels under an increase of the size of the basis of states appears to be reliable. This
observation means that we are, in principle, in a position to use the numerically determined
resonance energies and resonance for an adiabatic time propagation algorithm, which will be
the subject of the next section of this paper.

3. Unifying structure and dynamics

We now attempt to reconcile the structure of the cubic potential with its dynamics in a unified
framework, inspired by a number of investigations regarding quantum dynamics formulated
in complex coordinates [31–34]. Note that the construction of a time propagation algorithm
from complex coordinates was explicitly mentioned as a desirable goal a rather long time

8
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Figure 3. The real (left panel) and the imaginary parts (right panel) of the exact resonance energy
of the ground state for the cubic potential are displayed as a function of g (solid lines). The real part
approaches the values 1

2 as g → 0, whereas the imaginary part vanishes in this limit. The exact
numerical values are compared to the sum of the first four leading terms of the strong-coupling
asymptotics (dashed lines) for a large coupling parameter g. The strong-coupling asymptotics are
defined in equation (17), and the coefficients are listed in table 2. The first four terms of the strong-
coupling expansion approximate the exact resonance energies up to surprisingly small values of g,

but both the real and the imaginary parts deviate substantially for g � 0.025.

ago, in [31]. Note also that the time propagation of wave packets in a cubic potential is not
completely trivial: we consider a particle initially at rest and located at q(t = 0) < −(3

√
g)−1

in the cubic potential V (q) = 1
2q2 +

√
gq3. According to classical mechanics, this particle

reaches q = −∞ in a finite time (as is well known), and for quantum mechanics, this means
that the component of a wave packet located, loosely speaking, at the left of the cubic well is
accelerated toward q = −∞ by the cubic term, consistent with the Ehrenfest theorem, and
escapes any (necessarily finite) grid in coordinate space used for the time propagation in a
finite time. This ‘escape mechanism,’ which leads to a loss of probability amplitude for any
part of the wave packet located in a finite subinterval of coordinate space, affords a physically
intuitive explanation for the finite decay width associated with the resonance eigenstates of
the cubic potential.

We proceed as follows. Using a basis spanned by the standard harmonic oscillator
wavefunctions {φJ (q)}∞J=0, we expand the cubic eigenfunctions 	N(q) of the complex-scaled
Hamiltonian (13), which fulfil Hc(θ)	N(q) = EN	N(q) with complex EN, as follows:

	N(q) =
∞∑

J=0

cN,J φJ (q). (18)

Here, the complex coefficients cN,J are found by the diagonalization of the complex-scaled
Hamiltonian (13). This immediately implies that the eigenfunctions of the (dilationally
transformed) cubic potential are also complex. In figure 4, for example, we display the real
and imaginary parts of the eigenfunctions of the ground (N = 0) and excited (N = 2) states of
the cubic potential with

√
g = 0.1.

After the evaluation of the eigenfunctions (18), the question may arise whether these
functions form a complete basis set. In fact, such a question is not completely trivial: it is
known [32, 35, 36] that for very special values of the dilational parameter θ , an incomplete
basis of the Hamiltonian can be obtained (see section 2.5 of [32]). In particular, it can be
shown that for special, isolated values of θ , the number of linearly independent vectors of
the complex-scaled potential may be smaller than the size of the Hamiltonian matrix. We
note, however, that any infinitesimally small variation of θ turns the spectrum into a complete
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Figure 4. Real (top panels) and imaginary (bottom panels) parts of the wavefunction 	N of the
cubic Hamiltonian as a function of coordinate q. Results have been obtained for the ground state
N = 0 and for the second excited state with N = 2. The coupling used is

√
g = 0.1 and the

universal complex rotation angle is θ = 36◦. Note that both the real and the imaginary parts of
the ground-state wavefunction have nodes, but the wavefunction has no zero when considered as
a complex variable.

one [32]. Below, therefore, we assume that the set of eigenfunctions (18) forms a complete
orthonormal basis in the complex-transformed space. That is, they fulfil the condition

(	N |	M) = δNM, (19)

where (·|·) is the so-called c-inner product introduced by N Moiseyev and co-workers
[35, 32]:

(	N |	M) =
∫

	N(q)	M(q) dq. (20)

In order to illustrate the properties of the c-inner product, we represent the Schrödinger
equation as a matrix eigenvalue problem [32] with a Hamiltonian matrix H, which we denote
in boldface notation in order to emphasize that it refers to the matrix obtained after the complex
rotation. In such a representation, the ‘bra’ and ‘ket’ eigenstates of the Hamiltonian are given
by the ΦL

j and ΦR
j row and column eigenvectors which satisfy the matrix equations

HΦR
j = EjΦR

j , (21)

and (
ΦL

j

)t
H = (

H tΦL
j

)t = Ej

(
ΦL

j

)t
. (22)

We recall that the eigenvalues of a matrix and its transpose are necessarily the same (as
follows from the secular equation), while the corresponding left and right eigenvectors are
not necessarily the same. Since the left eigenvectors ΦL

j are eo ipso transposed and satisfy
the eigenvalue equation of the transposed Hamiltonian, it is not necessary to invoke complex
conjugation in the definition of the inner product (20). When the Hamiltonian matrix is

10
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derived from an originally ‘purely real’ Hamiltonian such as (1) by complex scaling and thus
symmetric (H = H t), then the right and left vectors are identical, ΦL

N = ΦR
N ≡ ΦN . This is

the case for the cubic Hamiltonian.
We now return to the eigenfunctions (18) of the cubic Hamiltonian. These wavefunctions,

which form a complete basis, may be utilized for the numerical integration of the (single-
particle) Schrödinger equation and, hence, for studying the dynamical evolution of the wave
packet in the cubic potential. Note, however, that this packet is defined initially in the normal
(i.e., not in the scaled) space. The time propagation, therefore, requires first a complex scaling
of the initial wave packet:

�(q, t = 0) → �(q eiθ , t = 0) ≡ �c(q, t = 0). (23)

After the complex scaling, the initial wave packet can be expanded in the basis of the functions
(18)

�c(q, t = 0) =
∞∑

N=0

bN	N(q), (24)

where bN = (	N |�c(t = 0)) . The propagation of the wave packet �c(q, t) in the complex-
scaled coordinates is finally given by

�c(q, t) =
∞∑

N=0

bN e−iEN t	N(q) =
∞∑

N=0

bN exp

(
−�N

2
t

)
e−i Re(EN )t	N(q). (25)

After performing the time propagation, the final function �c(q, t) should be transformed back
into the ‘normal’ space, to obtain the wavefunction �(q, t). The back-transformation proceeds
by a simple inversion of the replacement operation (23),

�c(q, t) → �(q, t) ≡ �c(q e−iθ , t). (26)

Using equation (26), we perform calculations for the time propagation of an (initially)
Gaussian wave packet within the cubic potential with the coupling parameter

√
g = 0.04. In

order to visualize the results of such a time propagation, we display in figure 5 the so-called
autocorrelation function

P(t) = |〈�(t)|�(0)〉|2 , (27)

which is commonplace for studying tunneling phenomena in multi-well quantum dot potentials
[37]. As seen from figure 5, the wave packet, initially located inside the well (at q = 0),
performs oscillations confined within the well. With every cycle of the oscillation, however, the
autocorrelation function slightly decreases due to tunneling. We have also verified numerically
that the decay of a wave packet corresponding to a single resonance eigenstate is described
correctly by the back-transformation (26), via a comparison to a Crank–Nicolson method,
where the spatial box had to be chosen sufficiently large in the latter case to accommodate the
spreading of the wave packet for larger propagation times.

We note that suitable generalizations of the method (26) can also be applied to time-
dependent (driven) potentials with resonances, e.g., within the adiabatic approximation, which
is valid provided one uses sufficiently small time steps so that the potential can be regarded as
constant in time within each time step. Recently, the adiabatic approach has been successfully
applied to study the propagation of the wave packet in the driven double-well-like potential
[19].

Up to now, we have considered the idealized case of a decoherence-free, dissipation-free
time evolution of the metastable states in potentials which can be approximated by a cubic
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Figure 5. Time evolution of the autocorrelation function (26). Calculations are performed for an

(initially) Gaussian wave packet of the form �(q, t = 0) = e−q2
/(π/2)1/4 in a cubic potential

with the coupling constant
√

g = 0.04. Results obtained from equation (??) are compared with
those of the well-known Crank–Nicolson approach (solid line). The lower panel is a close-up of the
upper one, where the range of the ordinate axis is restricted to the interval P(t) ∈ (0.98, 1.0). The
maximum of P(t) = 0.9939 near the sixth oscillation, at time t = 19.29, is faithfully reproduced
by the complex-scaled propagation.

Hamiltonian. The coupling of the system to an ensemble of harmonic oscillator modes, whose
levels are occupied according to thermal distributions, changes the dynamics. The latter
model has been studied extensively in the literature where it is commonly referred to as the
Caldeira–Leggett model [38], and it has been discussed at length in a number of research
articles and books [39–47]; therefore its details are relegated to the appendix A. The model
describes dissipation and the corresponding quantum decoherence, and, in general, leads to
multiplicative corrections to the decay widths of the resonance eigenstates, of the form

�N → �N(1 + δN) (28)

for the decay widths. The corrections δN, initially, could be assumed as affecting only the
structure of the resonance energies, but using our time propagation, it is easy to include them
into the dynamics as well, by simply applying the replacement (28) to the �N which are present
in equation (26).

4. Summary and outlook

In this paper, we have illustrated a certain duality of the cubic anharmonic oscillator; for purely
imaginary coupling, the eigenenergies are real, whereas for real coupling, the resonance
energies are complex (see sections 2.1 and 2.2). Moreover, for imaginary coupling, there
are no instanton configurations to consider, and the quantization condition involves only
the ‘perturbative B function,’ suitably resummed, and is of the plain Bohr–Sommerfeld
type (see equation (7)). By contrast, for real coupling, there are instanton configurations
present, and these manifest themselves in nonvanishing decay widths of the state and in a
modified quantization condition with allowance for the instanton configurations. The modified
quantization is not obtained here, but we lay the groundwork for its construction. (Specifically,
the leading term of the ‘instanton A function’ is given in equation (12).)

12



J. Phys. A: Math. Theor. 41 (2008) 095302 U D Jentschura et al

In other words, even anharmonic oscillators (quartic, sextic, etc), for real coupling, are
described by a plain Bohr–Sommerfeld quantization condition, whereas for negative coupling,
they give rise to instantons. The structure of an even oscillator for negative coupling is thus
in a certain sense analogous to an odd oscillator for real coupling

√
g ∈ R, and the presence

of instantons and the corresponding nontrivial saddle points of the Euclidean action demand a
modification of the Bohr–Sommerfeld quantization condition. By contrast, an even oscillator
for positive coupling parameter is analogous to an odd oscillator for purely imaginary coupling√

g = iβ and is described by a plain Bohr–Sommerfeld quantization condition and completely
characterized by Rayleigh–Schrödinger perturbation theory.

For the determination of the resonance energies of the cubic potential (positive coupling,
see section 2.2), three different methods have been compared. Method I (numerical approach
in complex coordinates) is found to be more universal in applicability than method II
(resummed weak-coupling expansion) and method III (strong-coupling expansion), although
good agreement is observed in the specified domains of applicability for each of the latter
two methods. In any case, the numerical approach provides us with resonance energies
and corresponding wavefunctions in complex space which can be used in order to unify the
analysis of the structure and of the dynamics of quantal particles. Hereby, the immediate
physical interpretation of the decay widths can be illustrated in a particularly clear way by
investigating the time propagation of wave packets.

As shown in section 3, the complex rotated eigenfunctions evolve in time according to
complex resonance energies which describe the quantum tunneling and the decay of the wave
packets. When transformed back into real space, the algorithm leads to results which are in
agreement with traditional quantum dynamics solvers like the Crank–Nicolson method. The
structure and the dynamics of the potentials are thus obtained in a single, unified method which
allows for an inclusion of modifications to the widths of the resonances due to dissipation
(coupling to the environment). For large propagation times, our algorithm is numerically
stable, because the time evolution of the resonance eigenstates given by equation (26) remains
valid for the entire coordinate space. The ‘escape’ of the wave packet toward q → −∞,

which is more pronounced for the cubic potential than, e.g., for the linear ponderomotive
potential known from laser physics, is thus automatically incorporated into our algorithm.
Moreover, slight modifications of the structural properties of the resonances due to additional
perturbations (e.g., couplings to an environment) can easily be incorporated into the dynamics,
as exemplified by equation (28) and discussed in more detail in the appendix.
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Appendix. Dissipation in quantum tunneling

Recently, a rather large number of theoretical [48–51] as well as experimental [52–56] studies
have been devoted to the current-biased Josephson junction since its low-lying energy levels
can be used to implement a solid-state quantum bit (qubit). This qubit circuit might be
considered as a conceivable basis of a scalable quantum computer. The theoretical analysis
of the structure and dynamics of Josephson junction qubits can be traced back to the cubic
potential, at least in the limit of a dissipation-free, or decoherence-free environment, which is
an idealized scenario that is nevertheless pursued in the construction of quantum computing
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devices. The measurement of the qubit state utilizes the escape from the cubic potential via
tunneling and thus it is important to have the dynamical aspects of related potential under
control.

When we work with a plain cubic Hamiltonian, it is clear that the analysis applies only to
the idealized case of a decoherence-free, dissipation-free time evolution of metastable states
in potentials which can be approximated by a cubic Hamiltonian. The coupling of the system
to an ensemble of harmonic oscillator modes, whose levels are occupied according to thermal
distributions, changes the dynamics and can be incorporated approximately into our algorithm
by the replacement (27). The so-called Caldeira–Leggett model has been studied extensively in
the literature [38–47] and describes dissipation and the corresponding quantum decoherence.
Ideally, of course, one has no dissipation in a device used for quantum computing, and this
scenario has been the focus of the current investigation. It might be worth emphasizing that our
approach allows for a full access to the quantum dynamics in the limit of vanishing dissipative
terms, whereas the approach originally outlined in [38–42] can be used to investigate the
rate at which the system loses information about coherent quantum states in the presence
of dissipation, but does not lead to a general description of the full quantum dynamics in
time-dependent potentials.

In general, the coupling to other degrees of freedom leads to the phenomenon of
dissipation where the energy is transferred irreversibly from the system under consideration
to the environment. In the work by A O Caldeira and A J Leggett [38], the so-called
‘system-plus-bath’ model has been introduced to describe dissipation. Within this model,
the bath (environment) is considered to be representable as a set of harmonic oscillators
interacting linearly with the system under consideration (i.e., with our cubic potential). The
total Hamiltonian for such a system can be written as

H diss
c = p2

2
+

1

2
q2 +

√
gq3 +

N∑
i=1

(
p2

i

2mi

+
miω

2
i

2
x2

i − qcixi + q2 c2
i

2miω
2
i

)
, (A.1)

where the first line displays the ‘environmentally decoupled’ system, i.e. the cubic anharmonic
oscillator in our case. The sum over i in equation (A.1) contains the Hamiltonians for a set of
N harmonic oscillators which are bilinearly coupled with strength ci to the system. Finally,
the last term represents a potential renormalization term [46, 47].

For the practical application of equation (A.1), it is necessary to eliminate the external
degrees of freedom, i.e. the bath modes labeled 1, . . . , N. Since these are just harmonic
oscillator modes, we can easily solve the equations of motion for the external degrees of
freedom. In a classical framework, we can derive the equation of motion for the cubic
anharmonic oscillator in the bath as [46, 47]

q̈ +
∫ t

0
dt ′γ (t − t ′)q̇(t ′) + q + 3

√
gq2 = ξ(t). (A.2)

Here, the damping kernel γ is given by

γ (t) =
N∑

i=1

c2
i

miω
2
i

cos(ωit), (A.3)

and the fluctuating acceleration

ξ(t) = −γ (t)q(0) +
N∑

i=1

ci

(
xi(0) cos(ωit) +

pi(0)

miωi

sin(ωit)

)
(A.4)

contains the initial conditions for the bath modes.
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On a fully quantum level, it is convenient to describe the decay of the metastable state
coupled to environment within the path integral formalism, because harmonic oscillator modes
can easily be integrated out. The analysis of dissipative quantum tunneling is naturally
performed in the Euclidean space (see [46, 47] for more details). That is, after a suitable
Wick rotation, the imaginary-time path integral provides the following representation of the
equilibrium density matrix,

ρβ(qi, qf ) = 1

Zβ

∫ q(β)=qf

q(0)=qi

Dq exp(−SE[q]), (A.5)

where Zβ is the partition function which here acts as a normalization prefactor, and
β = 1/(kBT ) is the imaginary or thermal time (we set h̄ = 1). The paths in the integral
(A.5) are weighted with a phase factor that contains the effective Euclidean action for the
anharmonic oscillator obtained after integrating out the modes of thermal bath [38, 39, 46, 47]
and reads

SE[q] =
∫ β

0
dτ

(
p2

2
+

1

2
q2 +

√
gq3

)
+

1

2

∫ β

0
dτ

∫ β

0
dτ ′k(τ − τ ′)q(τ )q(τ ′). (A.6)

The first term of this action is just a standard Euclidean action of the cubic Hamiltonian (1),
while the second term describes the frictional influence of the environment. The temperature-
dependent, nonlocal (in time) damping kernel k(τ − τ ′) may be expressed as a Fourier series
(see, e.g., [43, 47])

k(t) = 1

β

+∞∑
n=−∞

ξn exp(iνnt), (A.7)

where the νn = 2πn/β are bosonic Matsubara frequencies. Finally, we have ξn = |νn|γ̂ (|νn|),
where γ̂ denotes the Laplace transform of the damping kernel (A.3).

Based on the path integral approach (A.5)–(A.7), the quantum-mechanical decay of the
cubic oscillator under the influence of a heat bath environment has been studied. In particular,
explicit results have been obtained which helped to understand how the tunneling rate depends
on the temperature of the environment, in the presence of medium and strong damping terms
[40, 43, 47].
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